Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Qing-Hua Wang, ${ }^{\text {a }}$ Guo-Cong Guo $^{\text {b }}$ and Ming-Sheng Wang ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry, Zhangzhou Normal }}$ University, Zhangzhou, Fujian 363000,
People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China

Correspondence e-mail:
wqh_1974@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.065$
$w R$ factor $=0.167$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,4-Bis(4-dimethylaminobenzyl)-2,3-diaza-1,3-butadiene

The title Schiff base compound, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4}$, is derived from the condensation reaction of hydrazine and 4-(dimethylamino)benzaldehyde. There is a crystallographic centre of symmetry at the mid-point of the $\mathrm{N}-\mathrm{N}$ bond.

Comment

There has been considerable interest in the study of Schiff base compounds for many years, due to their biological activities (Wetmore et al., 2001; Sattari et al., 1992). In this paper, we report the crystal structure of the title Schiff base compound, (I) (Fig. 1).

There is a crystallographic centre of symmetry at the midpoint of the $\mathrm{N} 2-\mathrm{N} 2 a$ bond [symmetry code: $(a)-x,-y, 2-$ z] and, as expected, the non- H atoms are nearly coplanar, forming an extended conjugated system. The $\mathrm{N} 2-\mathrm{N} 2 a$ bond distance is 1.410 (3) \AA. The $\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 6$ angle is $123.3(2)^{\circ}$, indicating the $s p^{2}$ hybridization mode of C 9 .

(I)

Two similar compounds, (E, E)- $p-N, N$-dimethylaminoacetophenone azine, (II), and 4,4'-bis(dimethylamino)benzophenone azine, (III), have been reported previously (Glaser et al., 1995; Hunig et al., 2000). Compounds (II) and (III) can be described as derivatives of (I) in which the H atom at C 9 has been substituted by methyl and p-dimethylaminophenyl, respectively. Compounds (II) and (III) also have inversion centres at the mid-point of the $\mathrm{N}-\mathrm{N}$ bond. As the size of the substituent group increases, the $\mathrm{N}-\mathrm{N}$ bond distance decreases, the $\mathrm{C}=\mathrm{N}$ bond lengths increase and the $\mathrm{C} 6-\mathrm{C} 9-$ N 2 bond angles are reduced [123.3 (2), 116.7 (1) and 115.4 (2) ${ }^{\circ}$ for compounds (I), (II) and (III), respectively]. The C7-C6-

Figure 1
A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms, and atom $\mathrm{N} 2 a$ to atom N 2 , by the symmetry code $(-x,-y, 2-z)$.

Received 4 March 2005 Accepted 17 March 2005 Online 31 March 2005

Figure 2
The molecular packing of (I), viewed along the b axis.

C9-N2 torsion angle also increases [4.8 (2), 14.2 (1) and 18.1 (2) ${ }^{\circ}$ for compounds (I), (II) and III, respectively], indicating that the more bulky the substituent group, the greater the deviation from ideal planar geometry.

Experimental

The title compound was prepared by the addition of hydrazine (5 mmol) to a stirred solution of 4-(dimethylamino)benzaldehyde $(10 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$. The mixture was stirred at room temperature for 24 h and then filtered; the resultant yellow crystalline solid was washed with ethanol several times and dried. Yellow crystals of (I) were grown by evaporation of a dichloromethanedimethylformamide solution (yield $1.20 \mathrm{~g}, 82 \%$). Spectroscopic analyisi: IR (KBr, v, cm^{-1}): 2909, 2848, 1603, 1521, 1363, 1230, 1178, 809, 518; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}, 1: 20\right): 322(s h), 390 \mathrm{~nm}$. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4}$: C 73.44, H 7.53, N 19.03; found: C 73.16, H 7.36, N 19.43\%.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4}$
$M_{r}=294.40$
Monoclinic, $P 2_{1} / c$
$a=8.232(4) \AA$
$b=6.065(3) \AA$
$c=16.710(9) \AA$
$\beta=97.864(6)^{\circ} \AA^{\circ}$
$V=826.4(7) \AA^{3}$
$Z=2$

$$
D_{x}=1.183 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1199 reflections
$\theta=2.5-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=292.2 \mathrm{~K}$
Block, yellow
$0.62 \times 0.45 \times 0.40 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD area-detector diffractometer

ω scans

Absorption correction: multi-scan (SPHERE in CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.910, T_{\text {max }}=0.980$
4511 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \left.\begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.067 P)^{2}\right. \\
\quad+0.1316 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
\text { Extinction correction: SHELXL97 } \\
\quad \text { (Sheldrick, 1997) } \\
\text { Extinction coefficient: } 0.13
\end{array}{ }^{-1}\right)
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.167$
$S=1.10$
1794 reflections
108 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 3$	$1.369(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.282(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.435(3)$	$\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$	$1.410(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.450(3)$	$\mathrm{C} 6-\mathrm{C} 9$	$1.452(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$122.27(18)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$	$112.0(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$120.58(18)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$121.31(18)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$116.68(18)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 6$	$123.3(2)$
Symmetry code: $(\mathrm{i})-x,-y, 2-z$.			

Symmetry code: (i) $-x,-y, 2-z$.
All methyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms $[\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$; each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The other H atoms were positioned theoretically and refined in riding mode $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$; the $\mathrm{C}-\mathrm{H}$ distances were allowed to refine.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support for this work was provided by the Education Bureau of Fujian Province, China (grant No. JA04246).

References

Glaser, R., Chen, G. S., Anthamatten, M. \& Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.
Hunig, S., Kemmer, M., Wenner, H., Barbosa, F., Gescheidt, G., Perepichka, I. F., Bauerle, P., Emge, A. \& Perers, K. (2000). Chem. Eur. J. 6, 25182632.

Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sattari, D., Alipour, E., Shriani, S. \& Amighian, J. (1992). J. Inorg. Biochem. 45, 115-122.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wetmore, S. D., Smith, D. M. \& Radom, L. (2001). J. Am. Chem. Soc. 123, 8678-8689.

