organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Hua Wang,^a* Guo-Cong Guo^b and Ming-Sheng Wang^b

^aDepartment of Chemistry, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China

Correspondence e-mail: wqh_1974@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.003 Å R factor = 0.065 wR factor = 0.167 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 1,4-Bis(4-dimethylaminobenzyl)-2,3-diaza-1,3-butadiene

The title Schiff base compound, $C_{18}H_{22}N_4$, is derived from the condensation reaction of hydrazine and 4-(dimethylamino)benzaldehyde. There is a crystallographic centre of symmetry at the mid-point of the N–N bond. Received 4 March 2005 Accepted 17 March 2005 Online 31 March 2005

Comment

There has been considerable interest in the study of Schiff base compounds for many years, due to their biological activities (Wetmore *et al.*, 2001; Sattari *et al.*, 1992). In this paper, we report the crystal structure of the title Schiff base compound, (I) (Fig. 1).

There is a crystallographic centre of symmetry at the midpoint of the N2–N2*a* bond [symmetry code: (*a*) -x, -y, 2 – *z*] and, as expected, the non-H atoms are nearly coplanar, forming an extended conjugated system. The N2–N2*a* bond distance is 1.410 (3) Å. The N2–C9–C6 angle is 123.3 (2)°, indicating the *sp*² hybridization mode of C9.

Two similar compounds, (E,E)-*p*-*N*,*N*-dimethylaminoacetophenone azine, (II), and 4,4'-bis(dimethylamino)benzophenone azine, (III), have been reported previously (Glaser *et al.*, 1995; Hunig *et al.*, 2000). Compounds (II) and (III) can be described as derivatives of (I) in which the H atom at C9 has been substituted by methyl and *p*-dimethylaminophenyl, respectively. Compounds (II) and (III) also have inversion centres at the mid-point of the N-N bond. As the size of the substituent group increases, the N-N bond distance decreases, the C==N bond lengths increase and the C6-C9-N2 bond angles are reduced [123.3 (2), 116.7 (1) and 115.4 (2)° for compounds (I), (II) and (III), respectively]. The C7-C6-

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms, and atom N2*a* to atom N2, by the symmetry code (-x, -y, 2 - z).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The molecular packing of (I), viewed along the b axis.

C9-N2 torsion angle also increases [4.8 (2), 14.2 (1) and $18.1 (2)^{\circ}$ for compounds (I), (II) and III, respectively], indicating that the more bulky the substituent group, the greater the deviation from ideal planar geometry.

Experimental

The title compound was prepared by the addition of hydrazine (5 mmol) to a stirred solution of 4-(dimethylamino)benzaldehyde (10 mmol) in ethanol (50 ml). The mixture was stirred at room temperature for 24 h and then filtered; the resultant yellow crystalline solid was washed with ethanol several times and dried. Yellow crystals of (I) were grown by evaporation of a dichloromethanedimethylformamide solution (yield 1.20 g, 82%). Spectroscopic analyisi: IR (KBr, v, cm⁻¹): 2909, 2848, 1603, 1521, 1363, 1230, 1178, 809, 518; UV-vis (CH₂Cl₂-EtOH, 1:20): 322 (sh), 390 nm. Analysis calculated for C₁₈H₂₂N₄: C 73.44, H 7.53, N 19.03; found: C 73.16, H 7.36, N 19.43%.

Crystal data

$C_{18}H_{22}N_4$	$D_x = 1.183 \text{ Mg m}^{-3}$
$M_r = 294.40$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1199
a = 8.232 (4) Å	reflections
b = 6.065 (3) Å	$\theta = 2.5-27.5^{\circ}$
c = 16.710 (9) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 97.864 \ (6)^{\circ}$	T = 292.2 K
V = 826.4 (7) Å ³	Block, yellow
Z = 2	$0.62 \times 0.45 \times 0.40 \text{ mm}$
Data collection	
Rigaku Mercury CCD area-detector	1794 independent reflections
diffractometer	1192 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.041$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SPHERE in CrystalClear;	$h = -10 \rightarrow 10$

$\theta_{\rm max} = 27.5^{\circ}$
$h=-10\rightarrow 10$
$k = -7 \rightarrow 4$
$l = -21 \rightarrow 21$

 $T_{\min} = 0.910, T_{\max} = 0.980$ 4511 measured reflections

Rigaku, 2002)

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.065$	+ 0.1316P]
$vR(F^2) = 0.167$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
794 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
.08 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	(Sheldrick, 1997)
	Extinction coefficient: 0.13 (2)

Table 1 Selected geometric parameters (Å, °).

N1-C3	1.369 (3)	N2-C9	1.282 (3)
N1-C2	1.435 (3)	$N2-N2^{i}$	1.410 (3)
N1-C1	1.450 (3)	C6-C9	1.452 (3)
C3-N1-C2	122.27 (18)	C9-N2-N2 ⁱ	112.0 (2)
C3-N1-C1	120.58 (18)	N1-C3-C4	121.31 (18)
C2-N1-C1	116.68 (18)	N2-C9-C6	123.3 (2)

Symmetry code: (i) -x, -y, 2 - z.

All methyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms [C-H = 0.96 Å]and $U_{iso}(H) = 1.5U_{eq}(C)$; each group was allowed to rotate freely about its C-C bond. The other H atoms were positioned theoretically and refined in riding mode $[U_{iso}(H) = 1.2U_{eq}(C)]$; the C-H distances were allowed to refine.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Financial support for this work was provided by the Education Bureau of Fujian Province, China (grant No. JA04246).

References

- Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449-1458.
- Hunig, S., Kemmer, M., Wenner, H., Barbosa, F., Gescheidt, G., Perepichka, I. F., Bauerle, P., Emge, A. & Perers, K. (2000). Chem. Eur. J. 6, 2518-2632
- Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- Sattari, D., Alipour, E., Shriani, S. & Amighian, J. (1992). J. Inorg. Biochem. 45, 115-122.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc. 123, 8678-8689.